RCMI Coordinating Center (RCMI CC) Header Logo

Connection

Sabzali Javadov to Signal Transduction

This is a "connection" page, showing publications Sabzali Javadov has written about Signal Transduction.
Connection Strength

0.694
  1. Javadov S, Jang S, Agostini B. Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives. Pharmacol Ther. 2014 Nov; 144(2):202-25.
    View in: PubMed
    Score: 0.270
  2. Escobales N, Nu?ez RE, Javadov S. Mitochondrial angiotensin receptors and cardioprotective pathways. Am J Physiol Heart Circ Physiol. 2019 06 01; 316(6):H1426-H1438.
    View in: PubMed
    Score: 0.094
  3. Khuchua Z, Glukhov AI, Strauss AW, Javadov S. Elucidating the Beneficial Role of PPAR Agonists in Cardiac Diseases. Int J Mol Sci. 2018 Nov 04; 19(11).
    View in: PubMed
    Score: 0.091
  4. Barreto-Torres G, Hernandez JS, Jang S, Rodr?guez-Mu?oz AR, Torres-Ramos CA, Basnakian AG, Javadov S. The beneficial effects of AMP kinase activation against oxidative stress are associated with prevention of PPARa-cyclophilin D interaction in cardiomyocytes. Am J Physiol Heart Circ Physiol. 2015 Apr 01; 308(7):H749-58.
    View in: PubMed
    Score: 0.070
  5. Hern?ndez JS, Barreto-Torres G, Kuznetsov AV, Khuchua Z, Javadov S. Crosstalk between AMPK activation and angiotensin II-induced hypertrophy in cardiomyocytes: the role of mitochondria. J Cell Mol Med. 2014 Apr; 18(4):709-20.
    View in: PubMed
    Score: 0.066
  6. Karmazyn M, Kilic A, Javadov S. The role of NHE-1 in myocardial hypertrophy and remodelling. J Mol Cell Cardiol. 2008 Apr; 44(4):647-53.
    View in: PubMed
    Score: 0.043
  7. Nu?ez RE, Javadov S, Escobales N. Critical role of angiotensin II type 2 receptors in the control of mitochondrial and cardiac function in angiotensin II-preconditioned rat hearts. Pflugers Arch. 2018 09; 470(9):1391-1403.
    View in: PubMed
    Score: 0.022
  8. Gan XT, Hunter JC, Huang C, Xue J, Rajapurohitam V, Javadov S, Karmazyn M. Ouabain increases iNOS-dependent nitric oxide generation which contributes to the hypertrophic effect of the glycoside: possible role of peroxynitrite formation. Mol Cell Biochem. 2012 Apr; 363(1-2):323-33.
    View in: PubMed
    Score: 0.014
  9. Hunter JC, Zeidan A, Javadov S, Kilic A, Rajapurohitam V, Karmazyn M. Nitric oxide inhibits endothelin-1-induced neonatal cardiomyocyte hypertrophy via a RhoA-ROCK-dependent pathway. J Mol Cell Cardiol. 2009 Dec; 47(6):810-8.
    View in: PubMed
    Score: 0.012
  10. Zeidan A, Paylor B, Steinhoff KJ, Javadov S, Rajapurohitam V, Chakrabarti S, Karmazyn M. Actin cytoskeleton dynamics promotes leptin-induced vascular smooth muscle hypertrophy via RhoA/ROCK- and phosphatidylinositol 3-kinase/protein kinase B-dependent pathways. J Pharmacol Exp Ther. 2007 Sep; 322(3):1110-6.
    View in: PubMed
    Score: 0.010
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
RCMI CC is supported by the National Institute on Minority Health and Health Disparities, National Institutes of Health (NIH), through Grant Number U24MD015970. The contents of this site are solely the responsibility of the authors and do not necessarily represent the official views of the NIH

For technical support please contact support