RCMI Coordinating Center (RCMI CC) Header Logo

Search Result Details

This page shows the details of why an item matched the keywords from your search.
One or more keywords matched the following properties of Pitts, Matthew W.
PropertyValue
overview My research investigates the role of selenoproteins in nervous system development and function. Selenoproteins are a unique family of proteins, characterized by the co-translational incorporation of selenium as selenocysteine, that play key roles in defense against oxidative stress. Current studies are focused largely upon selenoprotein function in two discrete populations of neurons, parvalbumin-(PV) inhibitory neurons and leptin receptor-expressing neurons of the hypothalamus. PV-interneurons are a class of GABAergic inhibitory neurons with fast-spiking properties that synchronize activity among neuronal populations. Due to their fast-spiking properties, these neurons are highly metabolically active and especially prone to redox imbalance. Moreover, dysfunction of PV-interneuron networks has been implicated in autism, epilepsy, and schizophrenia. Selenoprotein synthesis is essential for PV interneurons, as PV interneurons fail to develop in transgenic mice where selenoprotein synthesis is conditionally disrupted in neurons, PV interneurons. Our recent studies have investigated transgenic mice lacking functional genes for both selenoprotein P, the putative selenium transport protein, and selenocysteine lyase, an enzyme involved in selenium recycling. These mice exhibit reduced survival, impaired motor coordination, neurodegeneration in auditory and motor-related brain regions, and audiogenic seizures. The audiogenic seizures appear to stem from reduced GABAergic inhibition in the inferior colliculus, as PV-interneuron density and GAD67 immunoreactivity are greatly reduced. We have also found that our male transgenic mice are more susceptible to neurodegeneration and neurobehavioral deficits than their female counterparts. Finally, pre-pubescent castration of male transgenic mice was demonstrated to prevent behavioral deficits, attenuate neurodegeneration, and increase brain selenoprotein levels. In addition, efforts are currently underway to decipher the contribution of selenoprotein M (SelM) to hypothalamic leptin signaling. We have previously reported that SelM KO mice are obese, with elevated circulating leptin levels and diminished hypothalamic leptin sensitivity. Furthermore, we have found that SelM is present in leptin receptor-expressing neurons of the arcuate hypothalamus. Elevated oxidative stress in these neurons has been demonstrated to diminish leptin signaling and promote obesity. We hypothesize that SelM serves to promote redox balance and nutrient sensing in these neurons.
One or more keywords matched the following items that are connected to Pitts, Matthew W.
Item TypeName
Academic Article Deletion of selenoprotein P results in impaired function of parvalbumin interneurons and alterations in fear learning and sensorimotor gating.
Academic Article Absence of selenoprotein P but not selenocysteine lyase results in severe neurological dysfunction.
Academic Article Deletion of selenoprotein M leads to obesity without cognitive deficits.
Academic Article Mice lacking selenoprotein P and selenocysteine lyase exhibit severe neurological dysfunction, neurodegeneration, and audiogenic seizures.
Academic Article Selenoprotein W expression and regulation in mouse brain and neurons.
Academic Article Selenoproteins in nervous system development and function.
Academic Article Competition between the Brain and Testes under Selenium-Compromised Conditions: Insight into Sex Differences in Selenium Metabolism and Risk of Neurodevelopmental Disease.
Academic Article Hypothalamic redox balance and leptin signaling - Emerging role of selenoproteins.
Academic Article Endoplasmic reticulum-resident selenoproteins as regulators of calcium signaling and homeostasis.
Academic Article Sexual Dimorphism in the Selenocysteine Lyase Knockout Mouse.
Academic Article Selenoprotein M Promotes Hypothalamic Leptin Signaling and Thioredoxin Antioxidant Activity.
Concept Selenoproteins
Concept Selenoprotein P
Academic Article Selenoprotein I deficiency in T cells promotes differentiation into tolerant phenotypes while decreasing Th17 pathology.
Academic Article Editorial: Selenium and Selenoproteins in Brain Development, Function, and Disease.
Academic Article Selenoprotein I (selenoi) as a critical enzyme in the central nervous system.
Search Criteria
  • Selenoproteins
RCMI CC is supported by the National Institute on Minority Health and Health Disparities, National Institutes of Health (NIH), through Grant Number U24MD015970. The contents of this site are solely the responsibility of the authors and do not necessarily represent the official views of the NIH

For technical support please contact support