RCMI Coordinating Center (RCMI CC) Header Logo

Connection

Donald Kurtz to Amino Acid Substitution

This is a "connection" page, showing publications Donald Kurtz has written about Amino Acid Substitution.
Connection Strength

0.155
  1. Beharry ZM, Eby DM, Coulter ED, Viswanathan R, Neidle EL, Phillips RS, Kurtz DM. Histidine ligand protonation and redox potential in the rieske dioxygenases: role of a conserved aspartate in anthranilate 1,2-dioxygenase. Biochemistry. 2003 Nov 25; 42(46):13625-36.
    View in: PubMed
    Score: 0.059
  2. Emerson JP, Cabelli DE, Kurtz DM. An engineered two-iron superoxide reductase lacking the [Fe(SCys)4] site retains its catalytic properties in vitro and in vivo. Proc Natl Acad Sci U S A. 2003 Apr 01; 100(7):3802-7.
    View in: PubMed
    Score: 0.056
  3. Okamoto Y, Onoda A, Sugimoto H, Takano Y, Hirota S, Kurtz DM, Shiro Y, Hayashi T. Crystal structure, exogenous ligand binding, and redox properties of an engineered diiron active site in a bacterial hemerythrin. Inorg Chem. 2013 Nov 18; 52(22):13014-20.
    View in: PubMed
    Score: 0.029
  4. Eidsness MK, Burden AE, Richie KA, Kurtz DM, Scott RA, Smith ET, Ichiye T, Beard B, Min T, Kang C. Modulation of the redox potential of the [Fe(SCys)(4)] site in rubredoxin by the orientation of a peptide dipole. Biochemistry. 1999 Nov 09; 38(45):14803-9.
    View in: PubMed
    Score: 0.011
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
RCMI CC is supported by the National Institute on Minority Health and Health Disparities, National Institutes of Health (NIH), through Grant Number U24MD015970. The contents of this site are solely the responsibility of the authors and do not necessarily represent the official views of the NIH

For technical support please contact support