RCMI Coordinating Center (RCMI CC) Header Logo

Role of mTOR in the diabetic heart


Collapse Biography 

Collapse Overview 
Collapse abstract
Project Summary/Abstract Heart failure (HF) develops at twice the rate in diabetic patients than in nondiabetic patients after myocardial infarction. A number of cardioprotective peptides, including insulin, activate the mammalian target of rapamycin (mTOR). However, the role of mTOR in the heart has not been fully defined because recent reports revealed two mTOR complexes; a rapamycin-sensitive mTOR complex (mTORC1) and a rapamycin- insensitive mTOR complex (mTORC2). To examine the functional consequences of mTOR activation, we generated transgenic mice with cardiac-specific overexpression of wild-type mTOR (mTOR-Tg). We found that the mTOR-Tg mice had preserved cardiac function, less interstitial fibrosis and less left ventricular (LV) dilatation at 4-week after ischemia-reperfusion injury (IRI) than controls. In our preliminary study using two animal models of obesity, db/db mice and high-fat diet induced obese (DIO) mice, we found that activation of cardiac mTORC1 was dramatically decreased in the late stage compared to control hearts, whereas mTORC2 activation was preserved. Hearts from the late stage db/db mice manifest impaired functional recovery after IRI ex vivo, concomitant with a decrease in mTORC1 activation. These data suggest that mTORC1 activation plays a role in cardioprotection after IRI and that loss of mTOR1 activation is involved in the increased vulnerability of the diabetic heart to ischemic injury. Recent papers strongly suggest that mTOR inhibits inflammation by suppressing cytokine production. Since cytokines are also generated in cardiomyocytes, we hypothesize that an enhanced inflammatory reaction due to decreased mTORC1 activation in cardiomyocytes is an important part of diabetic pathogenesis and is likely to account for the high rate of heart failure in diabetic patients. The goal of the current proposal is to understand if, and how, mTOR activation can prevent heart failure in the diabetic heart after IRI. This proposal is based on three hypotheses: 1) that decreased mTOR activation in diabetic hearts increases cardiomyocyte loss in post-IRI, 2) that activating mTOR reduces interstitial fibrosis by suppressing the inflammatory response in post-IRI hearts, and 3) that restoration of mTORC1 activity in diabetic hearts can prevent heart failure following IRI. We will test these hypotheses in the following three aims. In Aim 1: To evaluate the role of mTOR complexes in the cardiac response to IRI using genetic mouse models. We will use our mTOR-Tg mice and heterozygous mTOR knockout mice. In Aim 2: To examine how mTOR activation affects cell survival and the inflammatory response in in vitro diabetic models. We will examine the effects of manipulating mTOR activation in in vitro cardiomyocyte. In Aim 3: To test whether mTOR activation is sufficient to protect the diabetic heart against heart failure post-IRI. We will use two mouse models of diabetes and our mTOR-Tg mice.
Collapse sponsor award id
R01HL098423

Collapse Time 
Collapse start date
2010-07-01
Collapse end date
2016-05-31
RCMI CC is supported by the National Institute on Minority Health and Health Disparities, National Institutes of Health (NIH), through Grant Number U24MD015970. The contents of this site are solely the responsibility of the authors and do not necessarily represent the official views of the NIH

For technical support please contact support