James Ingram to Learning
This is a "connection" page, showing publications James Ingram has written about Learning.
Connection Strength
2.914
-
Ingram JN, Sadeghi M, Flanagan JR, Wolpert DM. An error-tuned model for sensorimotor learning. PLoS Comput Biol. 2017 12; 13(12):e1005883.
Score: 0.575
-
Ingram JN, Flanagan JR, Wolpert DM. Context-dependent decay of motor memories during skill acquisition. Curr Biol. 2013 Jun 17; 23(12):1107-12.
Score: 0.419
-
Ingram JN, Howard IS, Flanagan JR, Wolpert DM. A single-rate context-dependent learning process underlies rapid adaptation to familiar object dynamics. PLoS Comput Biol. 2011 Sep; 7(9):e1002196.
Score: 0.374
-
Cesanek E, Zhang Z, Ingram JN, Wolpert DM, Flanagan JR. Motor memories of object dynamics are categorically organized. Elife. 2021 11 19; 10.
Score: 0.189
-
Wolpe N, Ingram JN, Tsvetanov KA, Henson RN, Wolpert DM, Rowe JB. Age-related reduction in motor adaptation: brain structural correlates and the role of explicit memory. Neurobiol Aging. 2020 06; 90:13-23.
Score: 0.167
-
Lengyel G, ?alalyte G, Pantelides A, Ingram JN, Fiser J, Lengyel M, Wolpert DM. Unimodal statistical learning produces multimodal object-like representations. Elife. 2019 05 01; 8.
Score: 0.158
-
Sadeghi M, Sheahan HR, Ingram JN, Wolpert DM. The visual geometry of a tool modulates generalization during adaptation. Sci Rep. 2019 02 25; 9(1):2731.
Score: 0.156
-
Sadeghi M, Ingram JN, Wolpert DM. Adaptive coupling influences generalization of sensorimotor learning. PLoS One. 2018; 13(11):e0207482.
Score: 0.153
-
Sheahan HR, Ingram JN, ?alalyte GM, Wolpert DM. Imagery of movements immediately following performance allows learning of motor skills that interfere. Sci Rep. 2018 09 25; 8(1):14330.
Score: 0.152
-
Carroll TJ, de Rugy A, Howard IS, Ingram JN, Wolpert DM. Enhanced crosslimb transfer of force-field learning for dynamics that are identical in extrinsic and joint-based coordinates for both limbs. J Neurophysiol. 2016 Jan 01; 115(1):445-56.
Score: 0.124
-
Howard IS, Ingram JN, Wolpert DM. Separate representations of dynamics in rhythmic and discrete movements: evidence from motor learning. J Neurophysiol. 2011 Apr; 105(4):1722-31.
Score: 0.089
-
Howard IS, Ingram JN, Wolpert DM. Context-dependent partitioning of motor learning in bimanual movements. J Neurophysiol. 2010 Oct; 104(4):2082-91.
Score: 0.086
-
Howard IS, Ingram JN, Wolpert DM. Composition and decomposition in bimanual dynamic learning. J Neurosci. 2008 Oct 15; 28(42):10531-40.
Score: 0.076
-
Tcheang L, Bays PM, Ingram JN, Wolpert DM. Simultaneous bimanual dynamics are learned without interference. Exp Brain Res. 2007 Oct; 183(1):17-25.
Score: 0.070
-
Mosberger AC, Sibener LJ, Chen TX, Rodrigues HFM, Hormigo R, Ingram JN, Athalye VR, Tabachnik T, Wolpert DM, Murray JM, Costa RM. Exploration biases forelimb reaching strategies. Cell Rep. 2024 Apr 23; 43(4):113958.
Score: 0.055
-
Zhang Z, Cesanek E, Ingram JN, Flanagan JR, Wolpert DM. Object weight can be rapidly predicted, with low cognitive load, by exploiting learned associations between the weights and locations of objects. J Neurophysiol. 2023 02 01; 129(2):285-297.
Score: 0.050
-
Howard IS, Ingram JN, Wolpert DM. A modular planar robotic manipulandum with end-point torque control. J Neurosci Methods. 2009 Jul 30; 181(2):199-211.
Score: 0.020