RCMI Coordinating Center (RCMI CC) Header Logo

Astrid Cardona

Faculty RankTenured
AddressOne UTSA Circle
MBT 1.212
San Antonio TX 78249
ORCID ORCID Icon0000-0002-5093-8078 Additional info
vCardDownload vCard

    Collapse Overview 
    Collapse overview
    Dr. Cardona studies inflammatory processes in the central nervous system (brain, spinal cord, and retina), focusing on autoimmune diseases, particularly multiple sclerosis and diabetes-associated vision loss (retinopathy). Autoimmune diseases are complex disorders with underlying mechanisms characterized by immune responses against self. The incidence of autoimmune diseases has tripled in the past decades, and with the obesity epidemic, the incidence of blindness due to diabetes is expected to escalate. The overarching goal of her research is to elucidate potential anti-inflammatory pathways for clinical intervention in autoimmune diseases.

    Mechanism of communication between neurons and resident tissue macrophages (microglia) is her primary focus. Her research focuses on the interaction between the neuronal fractalkine (FKN) and its microglial receptor CX3CR1. Microglia are essential cells that support the function of neurons. Microglial cells are sensors of injury, constantly searching for damage, injured or unnecessary neurons, synapses, and infectious agents. However, exaggerated responses of microglia in response to injury can lead to bystander damage to neurons. Her studies have shown that both FKN and CX3CR1 are highly abundant in the brain, spinal cord, and retina and directly inhibit microglia’s inflammatory behavior. In humans, mutations in the CX3CR1 gene give rise to a defective receptor in its ability to bind the FKN. Therefore, understanding the role of the human versions of CX3CR1 is of clinical relevance for targeted clinical approaches. To address this, her team has developed an experimental model to study the human polymorphic variant and how the expression of these altered receptors affects disease initiation and progression. Her interest in elucidating the role of environmental factors (metabolic endotoxemia and recurrent infections) in disease susceptibility will be instrumental in understanding neuronal-microglia communication to regulate immune-mediated damage and facilitate tissue repair.

    Collapse Bibliographic 
    Collapse selected publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Faculty can login to make corrections and additions.
    Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
    PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
    1. Cardona SM, Kim SV, Church KA, Torres VO, Cleary IA, Mendiola AS, Saville SP, Watowich SS, Parker-Thornburg J, Soto-Ospina A, Araque P, Ransohoff RM, Cardona AE. Role of the Fractalkine Receptor in CNS Autoimmune Inflammation: New Approach Utilizing a Mouse Model Expressing the Human CX3CR1I249/M280 Variant. Front Cell Neurosci. 2018; 12:365. PMID: 30386211.
    2. Bemiller SM, Maphis NM, Formica SV, Wilson GN, Miller CM, Xu G, Kokiko-Cochran ON, Kim KW, Jung S, Cannon JL, Crish SD, Cardona AE, Lamb BT, Bhaskar K. Genetically enhancing the expression of chemokine domain of CX3CL1 fails to prevent tau pathology in mouse models of tauopathy. J Neuroinflammation. 2018 Sep 25; 15(1):278. PMID: 30253780.
      Citations: 5     Fields:    Translation:AnimalsCells
    3. Wilson KD, Ochoa LF, Solomon OD, Pal R, Cardona SM, Carpio VH, Keiser PH, Cardona AE, Vargas G, Stephens R. Elimination of intravascular thrombi prevents early mortality and reduces gliosis in hyper-inflammatory experimental cerebral malaria. J Neuroinflammation. 2018 Jun 04; 15(1):173. PMID: 29866139.
      Citations: 2     Fields:    Translation:AnimalsCells
    4. Rhodes CT, Zunino G, Huang SA, Cardona SM, Cardona AE, Berger MS, Lemmon VP, Lin CA. Region specific knock-out reveals distinct roles of chromatin modifiers in adult neurogenic niches. . 2018; 17(3):377-389. PMID: 29433384.
    5. Lee PY, Sykes DB, Ameri S, Kalaitzidis D, Charles JF, Nelson-Maney N, Wei K, Cunin P, Morris A, Cardona AE, Root DE, Scadden DT, Nigrovic PA. The metabolic regulator mTORC1 controls terminal myeloid differentiation. Sci Immunol. 2017 May 26; 2(11). PMID: 28763796.
      Citations: 7     Fields:    
    6. Mendiola AS, Cardona AE. The IL-1ß phenomena in neuroinflammatory diseases. J Neural Transm (Vienna). 2018 05; 125(5):781-795. PMID: 28534174.
      Citations: 16     Fields:    Translation:HumansAnimals
    7. Saederup N, Cardona AE, Croft K, Mizutani M, Cotleur AC, Tsou CL, Ransohoff RM, Charo IF. Correction: Selective Chemokine Receptor Usage by Central Nervous System Myeloid Cells in CCR2-Red Fluorescent Protein Knock-In Mice. PLoS One. 2017; 12(4):e0176931. PMID: 28448577.
      Citations:    Fields:    
    8. Mendiola AS, Garza R, Cardona SM, Mythen SA, Lira SA, Akassoglou K, Cardona AE. Fractalkine Signaling Attenuates Perivascular Clustering of Microglia and Fibrinogen Leakage during Systemic Inflammation in Mouse Models of Diabetic Retinopathy. Front Cell Neurosci. 2016; 10:303. PMID: 28119571.
    9. Hertwig L, Hamann I, Romero-Suarez S, Millward JM, Pietrek R, Chanvillard C, Stuis H, Pollok K, Ransohoff RM, Cardona AE, Infante-Duarte C. CX3CR1-dependent recruitment of mature NK cells into the central nervous system contributes to control autoimmune neuroinflammation. Eur J Immunol. 2016 08; 46(8):1984-96. PMID: 27325505.
      Citations: 16     Fields:    Translation:AnimalsCells
    10. Mishra PK, Li Q, Munoz LE, Mares CA, Morris EG, Teale JM, Cardona AE. Reduced Leukocyte Infiltration in Absence of Eosinophils Correlates with Decreased Tissue Damage and Disease Susceptibility in ?dblGATA Mice during Murine Neurocysticercosis. PLoS Negl Trop Dis. 2016 06; 10(6):e0004787. PMID: 27332553.
      Citations: 4     Fields:    Translation:AnimalsCells
    11. Solano Fonseca R, Mahesula S, Apple DM, Raghunathan R, Dugan A, Cardona A, O'Connor J, Kokovay E. Neurogenic Niche Microglia Undergo Positional Remodeling and Progressive Activation Contributing to Age-Associated Reductions in Neurogenesis. Stem Cells Dev. 2016 Apr 01; 25(7):542-55. PMID: 26857912.
      Citations: 24     Fields:    Translation:AnimalsCells
    12. Cardona SM, Mendiola AS, Yang YC, Adkins SL, Torres V, Cardona AE. Disruption of Fractalkine Signaling Leads to Microglial Activation and Neuronal Damage in the Diabetic Retina. ASN Neuro. 2015 Sep-Oct; 7(5). PMID: 26514658.
      Citations: 16     Fields:    Translation:AnimalsCells
    13. Febinger HY, Thomasy HE, Pavlova MN, Ringgold KM, Barf PR, George AM, Grillo JN, Bachstetter AD, Garcia JA, Cardona AE, Opp MR, Gemma C. Time-dependent effects of CX3CR1 in a mouse model of mild traumatic brain injury. J Neuroinflammation. 2015 Sep 02; 12:154. PMID: 26329692.
      Citations: 32     Fields:    Translation:AnimalsCells
    14. Maphis N, Xu G, Kokiko-Cochran ON, Cardona AE, Ransohoff RM, Lamb BT, Bhaskar K. Loss of tau rescues inflammation-mediated neurodegeneration. Front Neurosci. 2015; 9:196. PMID: 26089772.
    15. Maphis N, Xu G, Kokiko-Cochran ON, Jiang S, Cardona A, Ransohoff RM, Lamb BT, Bhaskar K. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain. 2015 Jun; 138(Pt 6):1738-55. PMID: 25833819.
      Citations: 135     Fields:    Translation:HumansAnimalsCells
    16. Grigsby JG, Cardona SM, Pouw CE, Muniz A, Mendiola AS, Tsin AT, Allen DM, Cardona AE. The role of microglia in diabetic retinopathy. J Ophthalmol. 2014; 2014:705783. PMID: 25258680.
    17. Sandstrom RS, Foret MR, Grow DA, Haugen E, Rhodes CT, Cardona AE, Phelix CF, Wang Y, Berger MS, Lin CH. Epigenetic regulation by chromatin activation mark H3K4me3 in primate progenitor cells within adult neurogenic niche. Sci Rep. 2014 Jun 20; 4:5371. PMID: 24947819.
      Citations: 14     Fields:    Translation:AnimalsCells
    18. Garcia JA, Cardona SM, Cardona AE. Isolation and analysis of mouse microglial cells. Curr Protoc Immunol. 2014 Feb 04; 104:14.35.1-14.35.15. PMID: 24510618.
      Citations: 6     Fields:    Translation:AnimalsCells
    19. Sosa RA, Murphey C, Ji N, Cardona AE, Forsthuber TG. The kinetics of myelin antigen uptake by myeloid cells in the central nervous system during experimental autoimmune encephalomyelitis. J Immunol. 2013 Dec 15; 191(12):5848-57. PMID: 24227784.
      Citations: 25     Fields:    Translation:AnimalsCellsPHPublic Health
    20. Bhaskar K, Maphis N, Xu G, Varvel NH, Kokiko-Cochran ON, Weick JP, Staugaitis SM, Cardona A, Ransohoff RM, Herrup K, Lamb BT. Microglial derived tumor necrosis factor-a drives Alzheimer's disease-related neuronal cell cycle events. Neurobiol Dis. 2014 Feb; 62:273-85. PMID: 24141019.
      Citations: 53     Fields:    Translation:HumansAnimalsCells
    21. Garcia JA, Pino PA, Mizutani M, Cardona SM, Charo IF, Ransohoff RM, Forsthuber TG, Cardona AE. Regulation of adaptive immunity by the fractalkine receptor during autoimmune inflammation. J Immunol. 2013 Aug 01; 191(3):1063-72. PMID: 23817416.
      Citations: 31     Fields:    Translation:AnimalsCells
    22. Mishra PK, Morris EG, Garcia JA, Cardona AE, Teale JM. Increased accumulation of regulatory granulocytic myeloid cells in mannose receptor C type 1-deficient mice correlates with protection in a mouse model of neurocysticercosis. Infect Immun. 2013 Apr; 81(4):1052-63. PMID: 23319563.
      Citations: 6     Fields:    Translation:AnimalsCells
    23. Cardona SM, Garcia JA, Cardona AE. The fine balance of chemokines during disease: trafficking, inflammation, and homeostasis. Methods Mol Biol. 2013; 1013:1-16. PMID: 23625489.
      Citations: 15     Fields:    Translation:HumansAnimalsCells
    24. Garcia JA, Cardona SM, Cardona AE. Analyses of microglia effector function using CX3CR1-GFP knock-in mice. Methods Mol Biol. 2013; 1041:307-17. PMID: 23813389.
      Citations: 9     Fields:    Translation:AnimalsCells
    25. Mizutani M, Pino PA, Saederup N, Charo IF, Ransohoff RM, Cardona AE. The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood. J Immunol. 2012 Jan 01; 188(1):29-36. PMID: 22079990.
      Citations: 151     Fields:    Translation:AnimalsCells
    26. Hamann I, Unterwalder N, Cardona AE, Meisel C, Zipp F, Ransohoff RM, Infante-Duarte C. Analyses of phenotypic and functional characteristics of CX3CR1-expressing natural killer cells. Immunology. 2011 May; 133(1):62-73. PMID: 21320123.
      Citations: 25     Fields:    Translation:HumansCells
    27. Pino PA, Cardona AE. Isolation of brain and spinal cord mononuclear cells using percoll gradients. J Vis Exp. 2011 Feb 02; (48). PMID: 21339713.
      Citations: 64     Fields:    Translation:AnimalsCells
    28. Ransohoff RM, Cardona AE. The myeloid cells of the central nervous system parenchyma. Nature. 2010 Nov 11; 468(7321):253-62. PMID: 21068834.
      Citations: 318     Fields:    Translation:HumansAnimalsCells
    29. Saederup N, Cardona AE, Croft K, Mizutani M, Cotleur AC, Tsou CL, Ransohoff RM, Charo IF. Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS One. 2010 Oct 27; 5(10):e13693. PMID: 21060874.
      Citations: 243     Fields:    Translation:Animals
    30. Bhaskar K, Konerth M, Kokiko-Cochran ON, Cardona A, Ransohoff RM, Lamb BT. Regulation of tau pathology by the microglial fractalkine receptor. Neuron. 2010 Oct 06; 68(1):19-31. PMID: 20920788.
      Citations: 230     Fields:    Translation:HumansAnimalsCells
    31. Lee S, Varvel NH, Konerth ME, Xu G, Cardona AE, Ransohoff RM, Lamb BT. CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer's disease mouse models. Am J Pathol. 2010 Nov; 177(5):2549-62. PMID: 20864679.
      Citations: 196     Fields:    Translation:AnimalsCells
    32. Cardona AE, Li M, Liu L, Savarin C, Ransohoff RM. Chemokines in and out of the central nervous system: much more than chemotaxis and inflammation. J Leukoc Biol. 2008 Sep; 84(3):587-94. PMID: 18467654.
      Citations: 42     Fields:    Translation:HumansAnimals
    33. Cardona AE, Sasse ME, Liu L, Cardona SM, Mizutani M, Savarin C, Hu T, Ransohoff RM. Scavenging roles of chemokine receptors: chemokine receptor deficiency is associated with increased levels of ligand in circulation and tissues. Blood. 2008 Jul 15; 112(2):256-63. PMID: 18347198.
      Citations: 72     Fields:    Translation:Animals
    34. Ransohoff RM, Liu L, Cardona AE. Chemokines and chemokine receptors: multipurpose players in neuroinflammation. Int Rev Neurobiol. 2007; 82:187-204. PMID: 17678962.
      Citations: 57     Fields:    Translation:HumansAnimalsCells
    35. Rebenko-Moll NM, Liu L, Cardona A, Ransohoff RM. Chemokines, mononuclear cells and the nervous system: heaven (or hell) is in the details. Curr Opin Immunol. 2006 Dec; 18(6):683-9. PMID: 17010588.
      Citations: 28     Fields:    Translation:HumansAnimalsCells
    36. Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, Lee JC, Cook DN, Jung S, Lira SA, Littman DR, Ransohoff RM. Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci. 2006 Jul; 9(7):917-24. PMID: 16732273.
      Citations: 581     Fields:    Translation:AnimalsCells
    37. Cardona AE, Huang D, Sasse ME, Ransohoff RM. Isolation of murine microglial cells for RNA analysis or flow cytometry. Nat Protoc. 2006; 1(4):1947-51. PMID: 17487181.
      Citations: 98     Fields:    Translation:AnimalsCells
    38. Huang D, Wujek J, Kidd G, He TT, Cardona A, Sasse ME, Stein EJ, Kish J, Tani M, Charo IF, Proudfoot AE, Rollins BJ, Handel T, Ransohoff RM. Chronic expression of monocyte chemoattractant protein-1 in the central nervous system causes delayed encephalopathy and impaired microglial function in mice. FASEB J. 2005 May; 19(7):761-72. PMID: 15857890.
      Citations: 25     Fields:    Translation:HumansAnimalsCells
    39. Cardona AE, Gonzalez PA, Teale JM. CC chemokines mediate leukocyte trafficking into the central nervous system during murine neurocysticercosis: role of gamma delta T cells in amplification of the host immune response. Infect Immun. 2003 May; 71(5):2634-42. PMID: 12704138.
      Citations: 26     Fields:    Translation:AnimalsCells
    40. Cardona AE, Teale JM. Gamma/delta T cell-deficient mice exhibit reduced disease severity and decreased inflammatory response in the brain in murine neurocysticercosis. J Immunol. 2002 Sep 15; 169(6):3163-71. PMID: 12218134.
      Citations: 21     Fields:    Translation:AnimalsCells
    41. Melby PC, Tabares A, Restrepo BI, Cardona AE, McGuff HS, Teale JM. Leishmania donovani: evolution and architecture of the splenic cellular immune response related to control of infection. Exp Parasitol. 2001 Sep; 99(1):17-25. PMID: 11708830.
      Citations: 20     Fields:    Translation:AnimalsCells
    42. Cardona AE, Restrepo BI, Jaramillo JM, Teale JM. Development of an animal model for neurocysticercosis: immune response in the central nervous system is characterized by a predominance of gamma delta T cells. J Immunol. 1999 Jan 15; 162(2):995-1002. PMID: 9916725.
      Citations: 33     Fields:    Translation:AnimalsCells
    Cardona's Networks
    Click the
    buttons for more information and interactive visualizations!
    Concepts (232)
    Co-Authors (6)
    Similar People (60)
    Same Department Expand Description
    RCMI CC is supported by the National Institute on Minority Health and Health Disparities, National Institutes of Health (NIH), through Grant Number U24MD015970. The contents of this site are solely the responsibility of the authors and do not necessarily represent the official views of the NIH

    For technical support please contact support