RCMI Coordinating Center (RCMI CC) Header Logo

Search Result Details

This page shows the details of why an item matched the keywords from your search.
One or more keywords matched the following properties of Drain, Charles Michael
PropertyValue
overview Education and Training. I have mentored more than 25 Ph.D. (5 underrepresented in STEM), 5 postdocs, and near 60 undergraduates (ca. 25 underrepresented in STEM) in dye chemistry, photophysics, and nanotechnology such as for applications in cancer diagnostics and therapeutics. High school students working on projects related to this proposal were supported by Project SEED, the “Harlem Children’s Society”, and supplements to research grants to allow disadvantage students research experiences. I have been on Hunter’s NIH supported Research Centers at Minority Institutions (RCMI) internal advisory committee for more than a decade. Much of our integrated radiochemistry doctoral research at Hunter College focuses on biomedical applications in cancer. I am co-PI of an NSF IGERT radiochemistry training grant and the relevant aspects of this program include fundamental radiochemistry with applications to nuclear medicine. (1) Small molecular probes – synthesis and evaluation; (2) Nanotechnology – targeted radionuclides; and (3) Radioelements in the environment. Hunter has the only radiochemistry training program in the City University of New York, and is nationally recognized for its innovative approaches. This supported three of my doctoral students working in cancer. I am Chair of the Department of Chemistry at Hunter College, in which 16 faculty, 5 lecturers, and 10 staff serve over 8,000 students a year. Editorial boards: Analytical Chemistry Insights; E-Journal of Chemistry; Chemistry. Research, the lab focuses on the applications of porphyrinoid dyes, nanophotonic materials, and science education. Interrelated projects include using these dyes for: (a) photodynamic therapeutic, (b) robust chelators for radio nuclides for diagnostics and therapies, (c) developing photonic sensors and contrast agents for biomedical applications, (d) developing a fundamental understanding of the photophysical properties of these dyes in relation to chemical structure, (e) developing and exploiting ‘click’ type chemical modifications of these dyes to append bio-targeting and other functional groups. Interestingly, appending different moieties to the exocyclic positions of the dyes make the suitable for solar energy harvesting. Major Reviews of our work relevant to the current application are below. Of particular interest are cancers with significant disparities in prognosis and outcomes: specifically head and neck and breast cancer.
preferred title Professor of Chemistry
Search Criteria
  • Chemistry
RCMI CC is supported by the National Institute on Minority Health and Health Disparities, National Institutes of Health (NIH), through Grant Number U24MD015970. The contents of this site are solely the responsibility of the authors and do not necessarily represent the official views of the NIH

For technical support please contact support