Jerzy Leszczynski to Nanostructures
This is a "connection" page, showing publications Jerzy Leszczynski has written about Nanostructures.
Connection Strength
2.454
-
Sizochenko N, Mikolajczyk A, Syzochenko M, Puzyn T, Leszczynski J. Zeta potentials (?) of metal oxide nanoparticles: A meta-analysis of experimental data and a predictive neural networks modeling. NanoImpact. 2021 04; 22:100317.
Score: 0.680
-
Toropov AA, Toropova AP, Veselinovic AM, Veselinovic JB, Nesmerak K, Raska I, Duchowicz PR, Castro EA, Kudyshkin VO, Leszczynska D, Leszczynski J. The Monte Carlo method based on eclectic data as an efficient tool for predictions of endpoints for nanomaterials - two examples of application. Comb Chem High Throughput Screen. 2015; 18(4):376-86.
Score: 0.440
-
Puzyn T, Leszczynska D, Leszczynski J. Toward the development of "nano-QSARs": advances and challenges. Small. 2009 Nov; 5(22):2494-509.
Score: 0.307
-
Shukla MK, Dubey M, Leszczynski J. Theoretical investigation of electronic structures and properties of C60-gold nanocontacts. ACS Nano. 2008 Feb; 2(2):227-34.
Score: 0.272
-
Ba?ares MA, Haase A, Tran L, Lobaskin V, Oberd?rster G, Rallo R, Leszczynski J, Hoet P, Korenstein R, Hardy B, Puzyn T. CompNanoTox2015: novel perspectives from a European conference on computational nanotoxicology on predictive nanotoxicology. Nanotoxicology. 2017 Sep; 11(7):839-845.
Score: 0.132
-
Gajewicz A, Cronin MT, Rasulev B, Leszczynski J, Puzyn T. Novel approach for efficient predictions properties of large pool of nanomaterials based on limited set of species: nano-read-across. Nanotechnology. 2015 Jan 09; 26(1):015701.
Score: 0.109
-
Toropova AP, Toropov AA, Benfenati E, Korenstein R, Leszczynska D, Leszczynski J. Optimal nano-descriptors as translators of eclectic data into prediction of the cell membrane damage by means of nano metal-oxides. Environ Sci Pollut Res Int. 2015 Jan; 22(1):745-57.
Score: 0.108
-
He X, Aker WG, Leszczynski J, Hwang HM. Using a holistic approach to assess the impact of engineered nanomaterials inducing toxicity in aquatic systems. J Food Drug Anal. 2014 Mar; 22(1):128-146.
Score: 0.103
-
Lubinski L, Urbaszek P, Gajewicz A, Cronin MT, Enoch SJ, Madden JC, Leszczynska D, Leszczynski J, Puzyn T. Evaluation criteria for the quality of published experimental data on nanomaterials and their usefulness for QSAR modelling. SAR QSAR Environ Res. 2013; 24(12):995-1008.
Score: 0.096
-
Gajewicz A, Rasulev B, Dinadayalane TC, Urbaszek P, Puzyn T, Leszczynska D, Leszczynski J. Advancing risk assessment of engineered nanomaterials: application of computational approaches. Adv Drug Deliv Rev. 2012 Dec; 64(15):1663-93.
Score: 0.092
-
Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, Hwang HM, Toropov A, Leszczynska D, Leszczynski J. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol. 2011 Mar; 6(3):175-8.
Score: 0.084
-
Sizochenko N, Gajewicz A, Leszczynski J, Puzyn T. Causation or only correlation? Application of causal inference graphs for evaluating causality in nano-QSAR models. Nanoscale. 2016 Apr 07; 8(13):7203-8.
Score: 0.030