RCMI Coordinating Center (RCMI CC) Header Logo

Connection

Xiaodu Wang to Bone and Bones

This is a "connection" page, showing publications Xiaodu Wang has written about Bone and Bones.
Connection Strength

9.136
  1. Xiao P, Roy A, Wang X. In-silico simulation of nanoindentation on bone using a 2D cohesive finite element model. J Mech Behav Biomed Mater. 2024 Mar; 151:106403.
    View in: PubMed
    Score: 0.922
  2. Islam MM, Wang X. Effect of coring conditions on temperature rise in bone. Biomed Mater Eng. 2017; 28(2):201-211.
    View in: PubMed
    Score: 0.566
  3. Lin L, Samuel J, Zeng X, Wang X. Contribution of extrafibrillar matrix to the mechanical behavior of bone using a novel cohesive finite element model. J Mech Behav Biomed Mater. 2017 01; 65:224-235.
    View in: PubMed
    Score: 0.553
  4. Samuel J, Sinha D, Zhao JC, Wang X. Water residing in small ultrastructural spaces plays a critical role in the mechanical behavior of bone. Bone. 2014 Feb; 59:199-206.
    View in: PubMed
    Score: 0.457
  5. Leng H, Reyes MJ, Dong XN, Wang X. Effect of age on mechanical properties of the collagen phase in different orientations of human cortical bone. Bone. 2013 Aug; 55(2):288-91.
    View in: PubMed
    Score: 0.438
  6. Dong XN, Luo Q, Wang X. Progressive post-yield behavior of human cortical bone in shear. Bone. 2013 Mar; 53(1):1-5.
    View in: PubMed
    Score: 0.427
  7. Islam A, Neil Dong X, Wang X. Mechanistic modeling of a nanoscratch test for determination of in situ toughness of bone. J Mech Behav Biomed Mater. 2012 Jan; 5(1):156-64.
    View in: PubMed
    Score: 0.391
  8. Luo Q, Nakade R, Dong X, Rong Q, Wang X. Effect of mineral-collagen interfacial behavior on the microdamage progression in bone using a probabilistic cohesive finite element model. J Mech Behav Biomed Mater. 2011 Oct; 4(7):943-52.
    View in: PubMed
    Score: 0.377
  9. Dong XN, Luo Q, Sparkman DM, Millwater HR, Wang X. Random field assessment of nanoscopic inhomogeneity of bone. Bone. 2010 Dec; 47(6):1080-4.
    View in: PubMed
    Score: 0.366
  10. Luo Q, Leng H, Acuna R, Dong XN, Rong Q, Wang X. Constitutive relationship of tissue behavior with damage accumulation of human cortical bone. J Biomech. 2010 Aug 26; 43(12):2356-61.
    View in: PubMed
    Score: 0.357
  11. Silva MJ, Brodt MD, Lynch MA, McKenzie JA, Tanouye KM, Nyman JS, Wang X. Type 1 diabetes in young rats leads to progressive trabecular bone loss, cessation of cortical bone growth, and diminished whole bone strength and fatigue life. J Bone Miner Res. 2009 Sep; 24(9):1618-27.
    View in: PubMed
    Score: 0.341
  12. Nyman JS, Roy A, Reyes MJ, Wang X. Mechanical behavior of human cortical bone in cycles of advancing tensile strain for two age groups. J Biomed Mater Res A. 2009 May; 89(2):521-9.
    View in: PubMed
    Score: 0.333
  13. Dong XN, Guda T, Millwater HR, Wang X. Probabilistic failure analysis of bone using a finite element model of mineral-collagen composites. J Biomech. 2009 Feb 09; 42(3):202-9.
    View in: PubMed
    Score: 0.324
  14. Wang X. The post-yield behavior of bone: from nano to macroscopic length scales. J Musculoskelet Neuronal Interact. 2008 Oct-Dec; 8(4):329.
    View in: PubMed
    Score: 0.320
  15. Nyman JS, Roy A, Acuna RL, Gayle HJ, Reyes MJ, Tyler JH, Dean DD, Wang X. Age-related effect on the concentration of collagen crosslinks in human osteonal and interstitial bone tissue. Bone. 2006 Dec; 39(6):1210-7.
    View in: PubMed
    Score: 0.277
  16. Nyman JS, Reyes M, Wang X. Effect of ultrastructural changes on the toughness of bone. Micron. 2005; 36(7-8):566-82.
    View in: PubMed
    Score: 0.258
  17. Wang X, Puram S. The toughness of cortical bone and its relationship with age. Ann Biomed Eng. 2004 Jan; 32(1):123-35.
    View in: PubMed
    Score: 0.230
  18. Li X, Agrawal CM, Wang X. Age dependence of in situ termostability of collagen in human bone. Calcif Tissue Int. 2003 Apr; 72(4):513-8.
    View in: PubMed
    Score: 0.216
  19. Wang X, Bank RA, TeKoppele JM, Agrawal CM. The role of collagen in determining bone mechanical properties. J Orthop Res. 2001 Nov; 19(6):1021-6.
    View in: PubMed
    Score: 0.198
  20. Han Y, Gomez J, Hua R, Xiao P, Gao W, Jiang JX, Wang X. Removal of glycosaminoglycans affects the in situ mechanical behavior of extrafibrillar matrix in bone. J Mech Behav Biomed Mater. 2021 11; 123:104766.
    View in: PubMed
    Score: 0.195
  21. Athanasiou KA, Zhu C, Lanctot DR, Agrawal CM, Wang X. Fundamentals of biomechanics in tissue engineering of bone. Tissue Eng. 2000 Aug; 6(4):361-81.
    View in: PubMed
    Score: 0.181
  22. Wang X, Bank RA, TeKoppele JM, Hubbard GB, Athanasiou KA, Agrawal CM. Effect of collagen denaturation on the toughness of bone. Clin Orthop Relat Res. 2000 Feb; (371):228-39.
    View in: PubMed
    Score: 0.175
  23. Wang X, Agrawal CM. A mixed mode fracture toughness test of bone-biomaterial interfaces. J Biomed Mater Res. 2000; 53(6):664-72.
    View in: PubMed
    Score: 0.174
  24. Maghsoudi-Ganjeh M, Wang X, Zeng X. Computational investigation of the effect of water on the nanomechanical behavior of bone. J Mech Behav Biomed Mater. 2020 01; 101:103454.
    View in: PubMed
    Score: 0.171
  25. Wang X, Shanbhag AS, Rubash HE, Agrawal CM. Short-term effects of bisphosphonates on the biomechanical properties of canine bone. J Biomed Mater Res. 1999 Mar 15; 44(4):456-60.
    View in: PubMed
    Score: 0.165
  26. Maghsoudi-Ganjeh M, Lin L, Wang X, Zeng X. Computational investigation of ultrastructural behavior of bone using a cohesive finite element approach. Biomech Model Mechanobiol. 2019 Apr; 18(2):463-478.
    View in: PubMed
    Score: 0.161
  27. Wang X, Agrawal CM. Interfacial fracture toughness of tissue-biomaterial systems. J Biomed Mater Res. 1997; 38(1):1-10.
    View in: PubMed
    Score: 0.142
  28. Wang X, Subramanian A, Dhanda R, Agrawal CM. Testing of bone-biomaterial interfacial bonding strength: a comparison of different techniques. J Biomed Mater Res. 1996; 33(3):133-8.
    View in: PubMed
    Score: 0.132
  29. Wang X, Lankford J, Agrawal CM. Use of a compact sandwich specimen to evaluate fracture toughness and interfacial bonding of bone. J Appl Biomater. 1994; 5(4):315-23.
    View in: PubMed
    Score: 0.115
  30. Yamashita J, Li X, Furman BR, Rawls HR, Wang X, Agrawal CM. Collagen and bone viscoelasticity: a dynamic mechanical analysis. J Biomed Mater Res. 2002; 63(1):31-6.
    View in: PubMed
    Score: 0.050
  31. Yamashita J, Furman BR, Rawls HR, Wang X, Agrawal CM. The use of dynamic mechanical analysis to assess the viscoelastic properties of human cortical bone. J Biomed Mater Res. 2001; 58(1):47-53.
    View in: PubMed
    Score: 0.047
  32. Phelps JB, Hubbard GB, Wang X, Agrawal CM. Microstructural heterogeneity and the fracture toughness of bone. J Biomed Mater Res. 2000 Sep 15; 51(4):735-41.
    View in: PubMed
    Score: 0.046
  33. Wang X, Agrawal CM. Fracture toughness of bone using a compact sandwich specimen: effects of sampling sites and crack orientations. J Biomed Mater Res. 1996; 33(1):13-21.
    View in: PubMed
    Score: 0.033
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
RCMI CC is supported by the National Institute on Minority Health and Health Disparities, National Institutes of Health (NIH), through Grant Number U24MD015970. The contents of this site are solely the responsibility of the authors and do not necessarily represent the official views of the NIH

For technical support please contact support