RCMI Coordinating Center (RCMI CC) Header Logo

Connection

Donald Kurtz to Oxidation-Reduction

This is a "connection" page, showing publications Donald Kurtz has written about Oxidation-Reduction.
Connection Strength

1.677
  1. Benavides BS, Valandro S, Cioloboc D, Taylor AB, Schanze KS, Kurtz DM. Structure of a Zinc Porphyrin-Substituted Bacterioferritin and Photophysical Properties of Iron Reduction. Biochemistry. 2020 04 28; 59(16):1618-1629.
    View in: PubMed
    Score: 0.169
  2. Cioloboc D, Kurtz DM. Targeted cancer cell delivery of arsenate as a reductively activated prodrug. J Biol Inorg Chem. 2020 05; 25(3):441-449.
    View in: PubMed
    Score: 0.168
  3. Benavides BS, Acharya R, Clark ER, Basak P, Maroney MJ, Nocek JM, Schanze KS, Kurtz DM. Structural, Photophysical, and Photochemical Characterization of Zinc Protoporphyrin IX in a Dimeric Variant of an Iron Storage Protein: Insights into the Mechanism of Photosensitized H2 Generation. J Phys Chem B. 2019 08 08; 123(31):6740-6749.
    View in: PubMed
    Score: 0.161
  4. Clark ER, Kurtz DM. Photosensitized H2 generation from "one-pot" and "two-pot" assemblies of a zinc-porphyrin/platinum nanoparticle/protein scaffold. Dalton Trans. 2016 Jan 14; 45(2):630-8.
    View in: PubMed
    Score: 0.126
  5. Caranto JD, Weitz A, Hendrich MP, Kurtz DM. The nitric oxide reductase mechanism of a flavo-diiron protein: identification of active-site intermediates and products. J Am Chem Soc. 2014 Jun 04; 136(22):7981-92.
    View in: PubMed
    Score: 0.112
  6. Schaller RA, Ali SK, Klose KE, Kurtz DM. A bacterial hemerythrin domain regulates the activity of a Vibrio cholerae diguanylate cyclase. Biochemistry. 2012 Oct 30; 51(43):8563-70.
    View in: PubMed
    Score: 0.100
  7. Fang H, Caranto JD, Mendoza R, Taylor AB, Hart PJ, Kurtz DM. Histidine ligand variants of a flavo-diiron protein: effects on structure and activities. J Biol Inorg Chem. 2012 Dec; 17(8):1231-9.
    View in: PubMed
    Score: 0.100
  8. Huang VW, Emerson JP, Kurtz DM. Reaction of Desulfovibrio vulgaris two-iron superoxide reductase with superoxide: insights from stopped-flow spectrophotometry. Biochemistry. 2007 Oct 09; 46(40):11342-51.
    View in: PubMed
    Score: 0.071
  9. Kurtz DM. Avoiding high-valent iron intermediates: superoxide reductase and rubrerythrin. J Inorg Biochem. 2006 Apr; 100(4):679-93.
    View in: PubMed
    Score: 0.063
  10. Kurtz DM. Microbial detoxification of superoxide: the non-heme iron reductive paradigm for combating oxidative stress. Acc Chem Res. 2004 Nov; 37(11):902-8.
    View in: PubMed
    Score: 0.058
  11. Beharry ZM, Eby DM, Coulter ED, Viswanathan R, Neidle EL, Phillips RS, Kurtz DM. Histidine ligand protonation and redox potential in the rieske dioxygenases: role of a conserved aspartate in anthranilate 1,2-dioxygenase. Biochemistry. 2003 Nov 25; 42(46):13625-36.
    View in: PubMed
    Score: 0.054
  12. Emerson JP, Coulter ED, Phillips RS, Kurtz DM. Kinetics of the superoxide reductase catalytic cycle. J Biol Chem. 2003 Oct 10; 278(41):39662-8.
    View in: PubMed
    Score: 0.053
  13. Silaghi-Dumitrescu R, Silaghi-Dumitrescu I, Coulter ED, Kurtz DM. Computational study of the non-heme iron active site in superoxide reductase and its reaction with superoxide. Inorg Chem. 2003 Jan 27; 42(2):446-56.
    View in: PubMed
    Score: 0.051
  14. Coulter ED, Kurtz DM. A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase. Arch Biochem Biophys. 2001 Oct 01; 394(1):76-86.
    View in: PubMed
    Score: 0.047
  15. Coulter ED, Shenvi NV, Kurtz DM. NADH peroxidase activity of rubrerythrin. Biochem Biophys Res Commun. 1999 Feb 16; 255(2):317-23.
    View in: PubMed
    Score: 0.039
  16. Hathazi D, Mot AC, Vaida A, Scurtu F, Lupan I, Fischer-Fodor E, Damian G, Kurtz DM, Silaghi-Dumitrescu R. Oxidative protection of hemoglobin and hemerythrin by cross-linking with a nonheme iron peroxidase: potentially improved oxygen carriers for use in blood substitutes. Biomacromolecules. 2014 May 12; 15(5):1920-7.
    View in: PubMed
    Score: 0.028
  17. Okamoto Y, Onoda A, Sugimoto H, Takano Y, Hirota S, Kurtz DM, Shiro Y, Hayashi T. H2O2-dependent substrate oxidation by an engineered diiron site in a bacterial hemerythrin. Chem Commun (Camb). 2014 Apr 04; 50(26):3421-3.
    View in: PubMed
    Score: 0.027
  18. Okamoto Y, Onoda A, Sugimoto H, Takano Y, Hirota S, Kurtz DM, Shiro Y, Hayashi T. Crystal structure, exogenous ligand binding, and redox properties of an engineered diiron active site in a bacterial hemerythrin. Inorg Chem. 2013 Nov 18; 52(22):13014-20.
    View in: PubMed
    Score: 0.027
  19. Mot AC, Roman A, Lupan I, Kurtz DM, Silaghi-Dumitrescu R. Towards the development of hemerythrin-based blood substitutes. Protein J. 2010 Aug; 29(6):387-93.
    View in: PubMed
    Score: 0.022
  20. Hillmann F, Riebe O, Fischer RJ, Mot A, Caranto JD, Kurtz DM, Bahl H. Reductive dioxygen scavenging by flavo-diiron proteins of Clostridium acetobutylicum. FEBS Lett. 2009 Jan 05; 583(1):241-5.
    View in: PubMed
    Score: 0.019
  21. Utecht RE, Kurtz DM. Cytochrome b5 and NADH-cytochrome-b5 reductase from sipunculan erythrocytes; a methemerythrin reduction system from Phascolopsis gouldii. Biochim Biophys Acta. 1988 Mar 23; 953(2):164-78.
    View in: PubMed
    Score: 0.018
  22. Pearce LL, Utecht RE, Kurtz DM. Comparisons of redox kinetics of methemerythrin and mu-sulfidomethemerythrin. Implications for interactions with cytochrome b5. Biochemistry. 1987 Dec 29; 26(26):8709-17.
    View in: PubMed
    Score: 0.018
  23. Isaza CE, Silaghi-Dumitrescu R, Iyer RB, Kurtz DM, Chan MK. Structural basis for O2 sensing by the hemerythrin-like domain of a bacterial chemotaxis protein: substrate tunnel and fluxional N terminus. Biochemistry. 2006 Aug 01; 45(30):9023-31.
    View in: PubMed
    Score: 0.016
  24. Iyer RB, Silaghi-Dumitrescu R, Kurtz DM, Lanzilotta WN. High-resolution crystal structures of Desulfovibrio vulgaris (Hildenborough) nigerythrin: facile, redox-dependent iron movement, domain interface variability, and peroxidase activity in the rubrerythrins. J Biol Inorg Chem. 2005 Jun; 10(4):407-16.
    View in: PubMed
    Score: 0.015
  25. Jin S, Kurtz DM, Liu ZJ, Rose J, Wang BC. X-ray crystal structure of Desulfovibrio vulgaris rubrerythrin with zinc substituted into the [Fe(SCys)4] site and alternative diiron site structures. Biochemistry. 2004 Mar 23; 43(11):3204-13.
    View in: PubMed
    Score: 0.014
  26. Bonomi F, Eidsness MK, Iametti S, Kurtz DM, Mazzini S, Morleo A. Contribution of the [FeII(SCys)4] site to the thermostability of rubredoxins. J Biol Inorg Chem. 2004 Apr; 9(3):297-306.
    View in: PubMed
    Score: 0.014
  27. Kurtz DM, Sage JT, Hendrich M, Debrunner PG, Lukat GS. Semi-met oxidation level of chalcogenide derivatives of methemerythrin. M?ssbauer and EPR studies. J Biol Chem. 1983 Feb 25; 258(4):2115-7.
    View in: PubMed
    Score: 0.013
  28. Jin S, Kurtz DM, Liu ZJ, Rose J, Wang BC. X-ray crystal structures of reduced rubrerythrin and its azide adduct: a structure-based mechanism for a non-heme diiron peroxidase. J Am Chem Soc. 2002 Aug 21; 124(33):9845-55.
    View in: PubMed
    Score: 0.012
  29. Eidsness MK, Burden AE, Richie KA, Kurtz DM, Scott RA, Smith ET, Ichiye T, Beard B, Min T, Kang C. Modulation of the redox potential of the [Fe(SCys)(4)] site in rubredoxin by the orientation of a peptide dipole. Biochemistry. 1999 Nov 09; 38(45):14803-9.
    View in: PubMed
    Score: 0.010
  30. Kurtz DM, Holm RH, Ruzicka FJ, Beinert H, Coles CJ, Singer TP. The high potential iron-sulfur cluster of aconitase is a binuclear iron-sulfur cluster. J Biol Chem. 1979 Jun 25; 254(12):4967-9.
    View in: PubMed
    Score: 0.010
  31. Guerra C, Koza RA, Walsh K, Kurtz DM, Wood PA, Kozak LP. Abnormal nonshivering thermogenesis in mice with inherited defects of fatty acid oxidation. J Clin Invest. 1998 Nov 01; 102(9):1724-31.
    View in: PubMed
    Score: 0.010
  32. Gupta N, Bonomi F, Kurtz DM, Ravi N, Wang DL, Huynh BH. Recombinant Desulfovibrio vulgaris rubrerythrin. Isolation and characterization of the diiron domain. Biochemistry. 1995 Mar 14; 34(10):3310-8.
    View in: PubMed
    Score: 0.007
  33. Zhang JH, Kurtz DM, Xia YM, Debrunner PG. Conversion of non-functional to functional iron following reconstitution of hemerythrin. Biochim Biophys Acta. 1992 Aug 21; 1122(3):293-8.
    View in: PubMed
    Score: 0.006
  34. Long RC, Zhang JH, Kurtz DM, Negri A, Tedeschi G, Bonomi F. Myohemerythrin from the sipunculid, Phascolopsis gouldii: purification, properties and amino acid sequence. Biochim Biophys Acta. 1992 Jul 31; 1122(2):136-42.
    View in: PubMed
    Score: 0.006
  35. Nocek JM, Kurtz DM, Sage JT, Xia YM, Debrunner P, Shiemke AK, Sanders-Loehr J, Loehr TM. Nitric oxide adducts of the binuclear iron site of hemerythrin: spectroscopy and reactivity. Biochemistry. 1988 Feb 09; 27(3):1014-24.
    View in: PubMed
    Score: 0.005
  36. Lukat GS, Kurtz DM, Shiemke AK, Loehr TM, Sanders-Loehr J. Sulfide-bridged derivatives of the binuclear iron site of hemerythrin at both met and semi-met oxidation levels. Biochemistry. 1984 Dec 18; 23(26):6416-22.
    View in: PubMed
    Score: 0.004
  37. Nocek JM, Kurtz DM, Pickering RA, Doyle MP. Oxidation of deoxyhemerythrin to semi-methemerythrin by nitrite. J Biol Chem. 1984 Oct 25; 259(20):12334-8.
    View in: PubMed
    Score: 0.004
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
RCMI CC is supported by the National Institute on Minority Health and Health Disparities, National Institutes of Health (NIH), through Grant Number U24MD015970. The contents of this site are solely the responsibility of the authors and do not necessarily represent the official views of the NIH

For technical support please contact support