Kumaraswamy Naidu Chitrala to Molecular Dynamics Simulation
This is a "connection" page, showing publications Kumaraswamy Naidu Chitrala has written about Molecular Dynamics Simulation.
Connection Strength
0.683
-
Chitrala KN, Nagarkatti M, Nagarkatti P, Yeguvapalli S. Analysis of the TP53 Deleterious Single Nucleotide Polymorphisms Impact on Estrogen Receptor Alpha-p53 Interaction: A Machine Learning Approach. Int J Mol Sci. 2019 Jun 18; 20(12).
Score: 0.155
-
Chitrala KN, Yang X, Busbee B, Singh NP, Bonati L, Xing Y, Nagarkatti P, Nagarkatti M. Computational prediction and in vitro validation of VEGFR1 as a novel protein target for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Sci Rep. 2019 05 02; 9(1):6810.
Score: 0.154
-
Chitrala KN, Yang X, Nagarkatti P, Nagarkatti M. Comparative analysis of interactions between aryl hydrocarbon receptor ligand binding domain with its ligands: a computational study. BMC Struct Biol. 2018 12 06; 18(1):15.
Score: 0.150
-
Chitrala KN, Yeguvapalli S. Computational prediction and analysis of breast cancer targets for 6-methyl-1, 3, 8-trichlorodibenzofuran. PLoS One. 2014; 9(11):e109185.
Score: 0.113
-
Chitrala KN, Yeguvapalli S. Computational screening and molecular dynamic simulation of breast cancer associated deleterious non-synonymous single nucleotide polymorphisms in TP53 gene. PLoS One. 2014; 9(8):e104242.
Score: 0.111