RCMI Coordinating Center (RCMI CC) Header Logo

Connection

Rajan Singh to Cell Line, Tumor

This is a "connection" page, showing publications Rajan Singh has written about Cell Line, Tumor.
Connection Strength

0.307
  1. Singh R, Parveen M, Basgen JM, Fazel S, Meshesha MF, Thames EC, Moore B, Martinez L, Howard CB, Vergnes L, Reue K, Pervin S. Increased Expression of Beige/Brown Adipose Markers from Host and Breast Cancer Cells Influence Xenograft Formation in Mice. Mol Cancer Res. 2016 Jan; 14(1):78-92.
    View in: PubMed
    Score: 0.086
  2. Singh R, Avliyakulov NK, Braga M, Haykinson MJ, Martinez L, Singh V, Parveen M, Chaudhuri G, Pervin S. Proteomic identification of mitochondrial targets of arginase in human breast cancer. PLoS One. 2013; 8(11):e79242.
    View in: PubMed
    Score: 0.075
  3. Pervin S, Hewison M, Braga M, Tran L, Chun R, Karam A, Chaudhuri G, Norris K, Singh R. Down-regulation of vitamin D receptor in mammospheres: implications for vitamin D resistance in breast cancer and potential for combination therapy. PLoS One. 2013; 8(1):e53287.
    View in: PubMed
    Score: 0.071
  4. Jimenez T, Friedman T, Vadgama J, Singh V, Tucker A, Collazo J, Sinha S, Hikim AS, Singh R, Pervin S. Nicotine Synergizes with High-Fat Diet to Induce an Anti-Inflammatory Microenvironment to Promote Breast Tumor Growth. Mediators Inflamm. 2020; 2020:5239419.
    View in: PubMed
    Score: 0.031
  5. Martinez L, Thames E, Kim J, Chaudhuri G, Singh R, Pervin S. Increased sensitivity of African American triple negative breast cancer cells to nitric oxide-induced mitochondria-mediated apoptosis. BMC Cancer. 2016 07 29; 16:559.
    View in: PubMed
    Score: 0.023
  6. Pervin S, Singh R, Hernandez E, Wu G, Chaudhuri G. Nitric oxide in physiologic concentrations targets the translational machinery to increase the proliferation of human breast cancer cells: involvement of mammalian target of rapamycin/eIF4E pathway. Cancer Res. 2007 Jan 01; 67(1):289-99.
    View in: PubMed
    Score: 0.012
  7. Pervin S, Singh R, Freije WA, Chaudhuri G. MKP-1-induced dephosphorylation of extracellular signal-regulated kinase is essential for triggering nitric oxide-induced apoptosis in human breast cancer cell lines: implications in breast cancer. Cancer Res. 2003 Dec 15; 63(24):8853-60.
    View in: PubMed
    Score: 0.009
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
RCMI CC is supported by the National Institute on Minority Health and Health Disparities, National Institutes of Health (NIH), through Grant Number U24MD015970. The contents of this site are solely the responsibility of the authors and do not necessarily represent the official views of the NIH

For technical support please contact support