RCMI Coordinating Center (RCMI CC) Header Logo

Connection

Marc B. Cox to HSP90 Heat-Shock Proteins

This is a "connection" page, showing publications Marc B. Cox has written about HSP90 Heat-Shock Proteins.
Connection Strength

4.589
  1. Ortiz NR, Guy N, Garcia YA, Sivils JC, Galigniana MD, Cox MB. Functions of the Hsp90-Binding FKBP Immunophilins. Subcell Biochem. 2023; 101:41-80.
    View in: PubMed
    Score: 0.851
  2. Cox MB, Johnson JL. Evidence for Hsp90 Co-chaperones in Regulating Hsp90 Function and Promoting Client Protein Folding. Methods Mol Biol. 2018; 1709:397-422.
    View in: PubMed
    Score: 0.602
  3. Guy NC, Garcia YA, Sivils JC, Galigniana MD, Cox MB. Functions of the Hsp90-binding FKBP immunophilins. Subcell Biochem. 2015; 78:35-68.
    View in: PubMed
    Score: 0.489
  4. Guy NC, Garcia YA, Cox MB. Therapeutic Targeting of the FKBP52 Co-Chaperone in Steroid Hormone Receptor-Regulated Physiology and Disease. Curr Mol Pharmacol. 2015; 9(2):109-25.
    View in: PubMed
    Score: 0.489
  5. De Leon JT, Iwai A, Feau C, Garcia Y, Balsiger HA, Storer CL, Suro RM, Garza KM, Lee S, Kim YS, Chen Y, Ning YM, Riggs DL, Fletterick RJ, Guy RK, Trepel JB, Neckers LM, Cox MB. Targeting the regulation of androgen receptor signaling by the heat shock protein 90 cochaperone FKBP52 in prostate cancer cells. Proc Natl Acad Sci U S A. 2011 Jul 19; 108(29):11878-83.
    View in: PubMed
    Score: 0.384
  6. Cox MB, Johnson JL. The role of p23, Hop, immunophilins, and other co-chaperones in regulating Hsp90 function. Methods Mol Biol. 2011; 787:45-66.
    View in: PubMed
    Score: 0.370
  7. Cox MB, Miller CA. Cooperation of heat shock protein 90 and p23 in aryl hydrocarbon receptor signaling. Cell Stress Chaperones. 2004 Mar; 9(1):4-20.
    View in: PubMed
    Score: 0.231
  8. Cox MB, Miller CA. Pharmacological and genetic analysis of 90-kDa heat shock isoprotein-aryl hydrocarbon receptor complexes. Mol Pharmacol. 2003 Dec; 64(6):1549-56.
    View in: PubMed
    Score: 0.227
  9. Singh JK, Hutt DM, Tait B, Guy NC, Sivils JC, Ortiz NR, Payan AN, Komaragiri SK, Owens JJ, Culbertson D, Blair LJ, Dickey C, Kuo SY, Finley D, Dyson HJ, Cox MB, Chaudhary J, Gestwicki JE, Balch WE. Management of Hsp90-Dependent Protein Folding by Small Molecules Targeting the Aha1 Co-Chaperone. Cell Chem Biol. 2020 03 19; 27(3):292-305.e6.
    View in: PubMed
    Score: 0.174
  10. Harris DC, Garcia YA, Samaniego CS, Rowlett VW, Ortiz NR, Payan AN, Maehigashi T, Cox MB. Functional Comparison of Human and Zebra Fish FKBP52 Confirms the Importance of the Proline-Rich Loop for Regulation of Steroid Hormone Receptor Activity. Int J Mol Sci. 2019 Oct 28; 20(21).
    View in: PubMed
    Score: 0.171
  11. Paul A, Garcia YA, Zierer B, Patwardhan C, Gutierrez O, Hildenbrand Z, Harris DC, Balsiger HA, Sivils JC, Johnson JL, Buchner J, Chadli A, Cox MB. The cochaperone SGTA (small glutamine-rich tetratricopeptide repeat-containing protein alpha) demonstrates regulatory specificity for the androgen, glucocorticoid, and progesterone receptors. J Biol Chem. 2014 May 30; 289(22):15297-308.
    View in: PubMed
    Score: 0.116
  12. Shafi AA, Cox MB, Weigel NL. Androgen receptor splice variants are resistant to inhibitors of Hsp90 and FKBP52, which alter androgen receptor activity and expression. Steroids. 2013 Jun; 78(6):548-54.
    View in: PubMed
    Score: 0.107
  13. Schmid AB, Lagleder S, Gr?wert MA, R?hl A, Hagn F, Wandinger SK, Cox MB, Demmer O, Richter K, Groll M, Kessler H, Buchner J. The architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop. EMBO J. 2012 Mar 21; 31(6):1506-17.
    View in: PubMed
    Score: 0.099
  14. Jinwal UK, Koren J, Borysov SI, Schmid AB, Abisambra JF, Blair LJ, Johnson AG, Jones JR, Shults CL, O'Leary JC, Jin Y, Buchner J, Cox MB, Dickey CA. The Hsp90 cochaperone, FKBP51, increases Tau stability and polymerizes microtubules. J Neurosci. 2010 Jan 13; 30(2):591-9.
    View in: PubMed
    Score: 0.087
  15. Cox MB, Riggs DL, Hessling M, Schumacher F, Buchner J, Smith DF. FK506-binding protein 52 phosphorylation: a potential mechanism for regulating steroid hormone receptor activity. Mol Endocrinol. 2007 Dec; 21(12):2956-67.
    View in: PubMed
    Score: 0.073
  16. Riggs DL, Cox MB, Cheung-Flynn J, Prapapanich V, Carrigan PE, Smith DF. Functional specificity of co-chaperone interactions with Hsp90 client proteins. Crit Rev Biochem Mol Biol. 2004 Sep-Dec; 39(5-6):279-95.
    View in: PubMed
    Score: 0.060
  17. Hartmann J, Wagner KV, Liebl C, Scharf SH, Wang XD, Wolf M, Hausch F, Rein T, Schmidt U, Touma C, Cheung-Flynn J, Cox MB, Smith DF, Holsboer F, M?ller MB, Schmidt MV. The involvement of FK506-binding protein 51 (FKBP5) in the behavioral and neuroendocrine effects of chronic social defeat stress. Neuropharmacology. 2012 Jan; 62(1):332-9.
    View in: PubMed
    Score: 0.024
  18. Hildenbrand ZL, Molugu SK, Paul A, Avila GA, Herrera N, Xiao C, Cox MB, Bernal RA. High-yield expression and purification of the Hsp90-associated p23, FKBP52, HOP and SGTa proteins. J Chromatogr B Analyt Technol Biomed Life Sci. 2010 Oct 15; 878(28):2760-4.
    View in: PubMed
    Score: 0.023
  19. Cheung-Flynn J, Prapapanich V, Cox MB, Riggs DL, Suarez-Quian C, Smith DF. Physiological role for the cochaperone FKBP52 in androgen receptor signaling. Mol Endocrinol. 2005 Jun; 19(6):1654-66.
    View in: PubMed
    Score: 0.016
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
RCMI CC is supported by the National Institute on Minority Health and Health Disparities, National Institutes of Health (NIH), through Grant Number U24MD015970. The contents of this site are solely the responsibility of the authors and do not necessarily represent the official views of the NIH

For technical support please contact support